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Abstract

Single image depth estimation (SIDE) plays a crucial role

in 3D computer vision. In this paper, we propose a two-

stage robust SIDE framework that can perform blind SIDE

for both indoor and outdoor scenes. At the first stage, the

scene understanding module will categorize the RGB im-

age into different depth ranges. We introduce two differ-

ent scene understanding modules based on scene classifica-

tion and coarse depth estimation respectively. At the sec-

ond stage, SIDE networks trained by the images of specific

depth range are applied to obtain an accurate depth map.

In order to improve the accuracy, we further design a multi-

task encoding-decoding SIDE network DS-SIDENet based

on depth-wise separable convolutions. DS-SIDENet is op-

timized to minimize both depth classification and depth re-

gression losses. This improves the accuracy compared to

a single-task SIDE network. Experimental results demon-

strate that training DS-SIDENet on an individual dataset

such as NYU achieves competitive performance to the state-

of-art methods with much better efficiency. Ours proposed

robust SIDE framework also shows good performance for

the ScanNet indoor images and KITTI outdoor images si-

multaneously. It achieves the top performance compared to

the Robust Vision Challenge (ROB) 2018 submissions.

1. Introduction

Single image depth estimation (SIDE) is a key feature of

understanding the geometric structure of the scene. In par-

ticular, the depth map can be used to infer the 3D struc-

ture, which is the basic element of many topics in 3D vi-

sion, such as image reconstruction, image rendering, and

shallow depth of the field. SIDE is an ill-posed problem,

since a single 2D image may be produced from an infinite

number of distinct 3D scenes. To overcome this ambiguity,

typical methods focus on exploiting statistically meaning-

ful features, such as perspective and texture information,

object locations, and occlusions. Recently, with the pros-

perity of deep convolutional neural networks (CNNs), many

deep learning-based methods have achieved significant per-

formance improvement.

This work aims to address two main issues of deep CNNs

for SIDE. Most of current SIDE methods train different net-

works for individual datasets, which makes models be spe-

cific to certain domains. As a result, the large differences

between different datasets such as indoor and outdoor pat-

terns limit the generalization ability of the SIDE network. A

model achieving considerable performance on one dataset

will perform poorly on the other one. Hence, the first is-

sue we aim to address is how to design a framework for

blind SIDE, where both indoor images and outdoor images

are fed into same SIDE network. Existing SIDE networks

utilize very deep architecture such as ResNet-101 [10] or

ResNext-101 [20] as backbone. The sizes of these networks

are very large. In addition, some of existing SIDE networks

such as DORN [10] contain fully connected layers. So a

sliding-window strategy is required during the prediction to

make the testing image size same as training. As a result,

the efficiency and flexibility of such network are not very

good. Hence, the second issue we aim to address is design-

ing an efficient fully-convolutional SIDE network achieving

high accuracy as well.

In this paper, we propose an effective two-stage frame-

work for robust single image depth estimation, as shown

in Fig. 1. Our framework starts by a scene understand-

ing module, where the input RGB image is categorized into

low depth-range or high depth-range. Then we apply differ-

ent SIDE networks trained by low depth-range RGB images

and high depth-range images respectively, to estimate an ac-

curate depth map. Since we do not have any prior knowl-

edge before the testing, our framework is blind SIDE. We

show that the scene understanding module can be imple-

mented by either a scene classification network, or a coarse

single image depth estimation network. Both of them work

well for the robust SIDE task of Robust Vision Challenge

(ROB) 2018 [1], where the testing images are randomly
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Figure 1. Our proposed two-stage robust SIDE framework.

sampled from ScanNet [6] and KITTI[11] datasets.

Next, we present an efficient fully-convolutional neu-

ral network DS-SIDENet for single image depth estima-

tion. DS-SIDENet is a multi-task network following the

encoding-decoding architecture [17]. The encoding part

consists of several depth-wise separable (DS) convolutional

layers to extract discriminative features from the input im-

age. The decoding part consists of two branches corre-

sponding to the depth classification task, and the depth

regression task respectively. In the depth classification

branch, the network generates pixel-wise classification la-

bels of the quantized depth. In the depth regression branch,

a continuous depth map is directly estimated. During the

training, we optimize the loss functions considering these

two branches at the same time, while only the depth classi-

fication result is utilized during the predication. This im-

proves the discriminative ability of the network, without

adding computational cost during depth estimation. Our

multi-task network is different from existing multi-task net-

works [8] which considers depth estimation and semantic

segmentation together. The two tasks in DS-SIDENet can

be considered as different formulations of same depth es-

timation problem, instead of different problems in [8]. We

show that DS-SIDENet can achieve better performance than

existing SIDE networks in NYU-Depth-v2 [9] dataset. Our

proposed robust SIDE based on DS-SIDENet achieves the

1st rank compared to ROB 2018 submissions.

The contributions of our work can be summarized as:

- We propose a two-stage framework effective for robust

SIDE based on scene understanding. Two different scene

understanding modules, scene classification, and coarse

depth estimation, are discussed

- We design an efficient SIDE network based on depth-

wise separable convolution. It achieves considerable accu-

racy and efficiency concurrently

- We show that doing multi-task learning in SIDE by

considering depth classification and depth regression to-

gether is helpful to improve the overall accuracy

2. Related work

Previous approaches for depth estimation from single im-

ages can be categorized into two main groups, methods

operating on hand-crafted features, and methods adopting

deep neural networks. Earlier works addressing the depth

estimation task belong to the first category. Hoiem et al.

[12] introduced photo pop-up, a fully automatic method for

creating a basic 3D model from a single photograph. Karsch

et al. [13] developed Depth Transfer, a non-parametric ap-

proach where the depth of an input image is reconstructed

by transferring the depth of multiple similar images with

warping and optimizing procedures. Ladicky [16] demon-

strated the benefit of combining semantic object labels with

depth features. Saxena et al. [25] introduced a multi-scale

conditional random field (CRF) to extract multi-scale con-

text information for depth estimation.

More recent approaches for depth estimation are based

on convolutional neural networks. In the pioneer work [9],

Eigen et al. introduced a coarse-to-fine network, and uti-

lized the scale-invariant loss to improve the accuracy of the

estimated depth map. This work is further extended in [8],

where the depth estimation, surface normal estimation, and

semantic segmentation are integrated into one unified net-

work. Li et al. [19] considered a loss function with com-

ponents in both the depth domain and the gradient of depth

domain. Fu. et al. [10] introduced a spacing-increasing dis-

cretization strategy to discretize depth and re-casted depth

network learning as an ordinal regression problem. Their

method achieves significant accuracy improvement com-

pared to previous methods.

Most of above works use some backbones with fully con-

nected layer. This will increase the model complexity and

computation cost. In addition, the input image size is re-

stricted during the testing. To solve this problem, a fully

convolutional network was proposed by Laina et al. [17].

A revised version of this work is introduced in [21], where

randomly sampled sparse depth is adopted together with the

RGB image to predict a dense depth map. Chen et al. [4]

used a fully-convolutional network to predict the relative

depth map, e.g., a relationship between the depths of any

two pixels. Kuznietsov et al. [15] utilized semi-supervised

learning for SIDE, where supervised learning on sparse

measurements is complemented with unsupervised learning

of the left-right consistency in stereo images. Cheng et al.

[5] proposed a spatial propagation network (CSPN) to learn

the affinity matrix and showed its effectiveness to improve

the performance of existing SIDE networks. All of the

above CNNs are constructed based on some computational

expensive architecture. In contrast, our DS-SIDENet is con-

structed by depth-wise separable convolution [23], which is

more efficient during the prediction.

3. Robust single image depth estimation

Blind depth estimation is very important in real scenario.

A good SIDE system should consequently perform well on

a variety of datasets with different characteristics, e.g., for

both the indoor scenario and the outdoor scenario. One

straightforward solution is to mix the training data of indoor

and outdoor images to train one network, which is utilized

by many of the ROB submissions. For example, Li et al.
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Figure 2. Robust SIDE based on two different scene understanding

modules.

[20] resized the KITTI and ScanNet images to 320 × 256,

and utilized a channel-wise attention mechanism to adap-

tively select the discriminative channels of features for in-

door and outdoor scenarios. But this will decrease the ac-

curacy compared to training different networks for different

datasets.

The major difficulty of blind SIDE is the contextual dif-

ference between scenes. Different scene types tend to have

different depth ranges. For example, outdoor scenes tend to

have a larger depth range than indoor scenes. So we propose

to use scene understanding to capture the depth range, in or-

der to support the following depth estimation. We introduce

a two-stage framework as illustrated in Fig. 2. The first

stage is a scene understanding module, which classifies the

input RGB image into low depth-range category (all objects

are close to camera) or high depth-range category (includ-

ing objects far away, e.g., distance higher than threshold).

Then we apply different SIDE networks for the low depth-

range images and high depth-range images respectively to

get an accurate depth map. In this section, we give two dif-

ferent solutions for the scene understanding stage.

Our first solution is using the scene classification meth-

ods to get the probability of the scenes, and obtaining the

depth range from these probabilities. Assume we have

scenes categories with ‘low depth-range’ or ‘high depth-

range’ labels based on their context, given the estimated

probabilities of these scenes from a scene classification net-

work, the depth-range can be calculated by a ‘majority vot-

ing’ from the top-K scenes with highest probability. For

example, the input image is classified as ‘low depth-range’

if there are more than K/2 ‘low depth-range’ votes from the

top-K scene categories. Other methods can also be used

to decide the depth-range such as weighted voting, or the

expected depth range based on the predicted scene proba-

bilities and the average depth range of each scene. In this

paper, we show that even the above majority voting strategy

is good in the ROB challenge. In our implementation, we

use the WideResNet-18 trained on the Places-365 dataset

[27] as the scene classification network. This dataset con-

sists of 365 labeled scene categories, such as sky, arena, ice-

berg... Given an input image, we use the top-15 (K = 15)

predicted scene categories to vote for depth range.

Our second solution is training a coarse depth estimation

network by mixing images from different depth ranges to-

gether. Then the depth range can be inferred from the statis-

tics of the estimated coarse depth map. We calculate the

maximum depth dmax of the whole estimated depth map,

and compare it to a threshold σ. If dmax > σ, the RGB in-

put is categorized as of high depth-range, otherwise it will

be categorized as of low depth-range. To decide σ, we cal-

culate the maximum estimated depth statistic using the val-

idation images of the ROB 2018 challenge [1], from which

we select σ as 5.89. In our implementation, the coarse depth

range estimation network has the same architecture as that

of the low depth-range DS-SIDENet given in Table 1 and

Table 2.

After obtaining the depth range, we apply one of the two

DS-SIDENets optimized for the low depth-range images

and high depth-range images respectively to generate an ac-

curate depth map. We also investigated the ‘coarse-to-fine’

architecture proposed in [9][21], by utilizing an RGBD net-

work which takes the estimated depth from the coarse depth

estimation as an additional feature with the RGB channels

. However, due to the inaccurate depth estimates from the

coarse network, no significant performance gain was ob-

served. It will be difficult for RGBD depth refinement with

an inaccurate sparse depth features.

4. DS-SIDENet

We propose a single image depth estimation network DS-

SIDENet based on depth-wise separable convolutions and

encoder-decoder architecture [17]. As shown in Fig. 3, our

network consists of two parts, the encoding part, and a two-

branch decoding part.

4.1. Encoding

The encoding part contains several depth-wise separable

convolutional layers [23] to extract the discriminative fea-

tures from the input image, as given in Table 1. Each ‘depth-

wise separable convolutional layer consists of a depth-wise

convolutional layer, and a point-wise convolutional layers.

The low depth-range images have different characteristics

with the high depth-range images, e.g., indoor and outdoor

images have different context. The encoding part of low

depth-range network (e.g., trained in NYU) is slightly dif-

ferent from the high depth-range network (e.g., trained in

KITTI). We downsample the output feature map size of

the high depth-range encoding module by ×4, and the low

depth-range encoding module by ×32.

4.2. Decoding

Since the output feature maps of the encoding part are

downsampled, the decoding part requires several upsam-

pling modules to retrieve the input feature map size. A base-
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Figure 3. (a) Network architecture of DS-SIDENet. (b) The standard upproj layer in [17]. The ‘output layer’ in classification branch is

different from the one in regression branch. (c) Our upproj-con layer with skip connections. The ‘X’, ‘Y’ and ‘Z’ correspond to the three

input feature maps of this block. ‘t’ is the scale difference between the input feature map and output feature map. ‘C ×W1 ×H1’ is the

size of input feature maps of the decoding block.

Table 1. Network architecture of the encoding part of DS-SIDENet. The ‘Block1’ to ‘Block5’ correspond to the encoding blocks dis-

played in Fig. 3(a).‘s’ means stride, ‘d’ means dilation rate, ‘dw’ means depth-wise separable convolutions. ‘convbn’ layer includes a

convolutional layer, followed by a batch normalization layer.

layer
low depth-range network high depth-range network

layer setting output dimension layer setting output dimension

input 3 × W × H 3 × W × H

Block 1
convbn, 3 × 3, 32, s2, d1

convbn, 3 × 3, 64, s1, d1
64 ×

1

2
W ×

1

2
H

convbn, 3 × 3, 32, s2, d1

convbn, 3 × 3, 64, s1, d1
64 ×

1

2
W ×

1

2
H

Block 2
[convbn, 3 × 3, 64, s1, d1, dw] × 3

convbn, 3 × 3, 128, s2, d1, dw
128 ×

1

4
W ×

1

4
H

[convbn, 3 × 3, 64, s1, d1, dw] × 3

convbn, 3 × 3, 128, s2, d1, dw
128 ×

1

4
W ×

1

4
H

Block 3
[convbn, 3 × 3, 128, s1, d1, dw] × 3

convbn, 3 × 3, 256, s2, d1, dw
256 ×

1

8
W ×

1

8
H

[convbn, 3 × 3, 128, s1, d1, dw] × 3

convbn, 3 × 3, 256, s1, d1, dw
256 ×

1

4
W ×

1

4
H

Block 4
[convbn, 3 × 3, 32, s1, d2, dw] × 12

convbn, 3 × 3, 256, s2, d1, dw
256 ×

1

16
W ×

1

16
H

[convbn, 3 × 3, 32, s1, d2, dw] × 12

convbn, 3 × 3, 256, s1, d1, dw
256 ×

1

4
W ×

1

4
H

Block 5
convbn, 3 × 3, 256, s2, d1, dw

convbn, 1 × 1, 512, s1, d1
512 ×

1

32
W ×

1

32
H

convbn, 3 × 3, 256, s1, d1, dw

convbn, 1 × 1, 128, s1, d1
128 ×

1

4
W ×

1

4
H

line solution is the ‘upproj’ layer proposed in [17], as given

in Fig. 3(b), which achieves better performance compared

to upsampling by simple deconvolution layer. Inspired by

the U-Net architecture [24], we design an improved upsam-

pling layer with additional skip connections from the encod-

ing part and RGB input, denoted as ‘upproj-con’ layer. As

shown in Fig. 3(c), assume the input feature map size from

the previous decoding layer is C×W1×H1, the output fea-

ture map size of ‘upproj-con’ layer will be C
2 × tW1× tH1,

where t is the scale difference between the input feature

map and output feature map.

The decoding part consists of two branches, the depth

classification branch, and the depth regression branch.

These two branches have mostly the same network archi-

tecture, but optimized with different loss functions. Each of

these two branches consists of several ‘upproj-con’ decod-

ing blocks and one additional ‘upproj’ block placed before

obtaining the final depth output, as given in Fig. 3(a) and

Table 2. For the low depth-range network, we set all t = 2.

For the high depth-range network, we set some of these t to

1 due to that the output of the encoding part of high depth-

range network is only downsampled 4 times. In addition,
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we replace the third upsampling module by stacked network

modules such as stacked hourglass (SHG) since it shows su-

perior performance in the outdoor disparity estimation task

[3]. We further adopt the stacked atrous multi-scale (SAM)

module proposed in [7] instead of standard SHG, which re-

places the downsampling and upsampling in SHG by atrous

convolutions. An ablation study of using different decoding

blocks is given in section 5.3.2.

4.3. Multi­task loss function

In the classification branch, the network performs depth

classification after quantizing the continuous depth into sev-

eral bins. We follow the quantization scheme proposed in

DORN [10], where depth range [α, β] is uniformly quan-

tized into K bins in the log scale. As shown in Eq. 1, the

input continuous depth x is quantized to discrete value b, K
is the number of bins, and q is the width of each bin.

b = round(log10(x)− log10(α))/q)

q = (log10(β)− log10(α))/K
(1)

When calculating the loss function of the classification

branch, we use a soft classification loss similar to dispar-

ity estimation [3], where the expected depth is the weighted

sum of the quantized depth probabilities and the quantized

depth values, and is the predicted depth for each pixel lo-

cation. Let pji represents the probability of pixel i being

quantized depth j, and D is the maximum quantized depth

bmax in Eq. 1 when x = β, the expected quantized depth di
of pixel i is calculated as di =

∑D

j=1 j × pji . A smooth L1

loss is utilized to measure the difference y = di − d∗i,qt be-

tween the predicted quantized depth di and the ground truth

quantized depth d∗i,qt, as given in Eq. 2.

smoothL1
(y) =

{

0.5y2 if |y| < 1

|y| − 0.5 otherwise
(2)

In the regression branch, the network directly regresses

the output feature maps to a continuous disparity map. We

use the L1 loss between the output and ground-truth depth

to measure the regression accuracy. Both the classification

branch and the regression branch are optimized simultane-

ously using multi-task learning, where the final loss func-

tion L is a linear combination of the above two loss func-

tions, as shown in Eq. 3, where d∗i,qt is the quantized depth

ground truth, and d∗i is the continuous depth ground truth.

The weights w1 and w2 are set to 1 empirically.

L =
∑

i

w1 · smoothL1
(dcls,i, d

∗

i,qt) + w2 · L1(dreg,i, d
∗

i ).

(3)

In section 5.3.1, we show that the depth maps from ei-

ther the classification branch or the regression branch of

DS-SIDENet is better than the outputs from the single task

SIDE network. We also observe that the classification out-

put is more accurate than regression output. We only use

the classification output during the testing, so that the com-

putational cost will not increase.

5. Experiments

5.1. Datasets and network training

We first utilize NYU dataset to show the effectiveness of

the proposed DS-SIDENet. The NYU-Depth-v2 [9] dataset

consists of RGB and depth images collected from 464 dif-

ferent indoor scenes. We use the official split of data as [9],

where 249 scenes are used for training and the rest 215 for

testing. Since all NYU images are indoor images with rela-

tively small depth, we train a low depth-range DS-SIDENet

on this dataset.

Next, we follow the robust single image depth estima-

tion challenge in ROB 2018 [1], where the same depth es-

timation system is evaluated on both the ScanNet indoor

images and the KITTI street-view images. The ScanNet

[6] is a large-scale RGB-D dataset for indoor scene recon-

struction, which contains 2.5 million RGB images in 1,513

scenes. Original RGB images are captured at a resolution of

1296× 968 and depth at 640× 480. The KITTI single im-

age depth prediction dataset [11] is a real-world dataset with

street views from a driving car. It contains about 46,000

training stereo image pairs with sparse ground-truth depth.

KITTI image size is around 1240× 370. We use the official

ROB training/validation/testing split for these two datasets.

Our robust SIDE framework consists of three modules,

the scene understanding, low depth-range DS-SIDENet,

and high depth-range DS-SIDENet. We resize ScanNet im-

ages to 320×240 to train the low depth-range DS-SIDENet,

and zero pad KITTI images to 1248× 384 to train the high

depth-range DS-SIDENet. As mentioned in Section 3, the

scene understanding can be achieved by either a scene clas-

sification network, or a coarse depth estimation network.

For scene classification, we utilize the official model of

WideResNet-18 trained on the Places-365 dataset, and re-

size the input RGB image to 224 × 224 during the testing

to predict the scene probabilities. For coarse depth estima-

tion, we mix the training images from ScanNet and KITTI

to train a DS-SIDENet. The ScanNet training images are

downsampled to 320× 240. The KITTI training images are

zero padded to 1248× 384 and downsampled to 832× 256.

Then random 320 × 240 patches are cropped to keep the

same size as ScanNet.

We utilize multiple evaluation metrics to evaluate the

performance of DS-SIDENet, including mean relative abso-

lute error (REL), mean relative squared error (sqREL), root

mean square error (RMSE), inverse root mean square error

(iRMSE), scale invariant logarithmic error (SILog), mean

average error (MAE), and δ threshold (δi = δ < 1.25i).
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Table 2. Network architecture of each of the decoding branch in DS-SIDENet. ‘Block i’ corresponds to the ‘Decoding block i-1’ and

‘Decoding block i-2’ in Fig. 3(a), i=1,2,...,5. ‘SAM’ has exact same architecture as the one in [7], where 3 AM modules are stacked.

layer
low depth-range network high depth range network

layer setting output dimension layer setting output dimension

Input feature maps 512 ×
1

32
W ×

1

32
H 128 ×

1

4
W ×

1

4
H

Block 1 upproj-con,t = 2 256 ×
1

16
W ×

1

16
H upproj-con,t = 1 64 ×

1

4
W ×

1

4
H

Block 2 upproj-con,t = 2 128 ×
1

8
W ×

1

8
H upproj-con,t = 1 32 ×

1

4
W ×

1

4
H

Block 3 upproj-con,t = 2 64 ×
1

4
W ×

1

4
H SAM 32 ×

1

4
W ×

1

4
H

Block 4 upproj-con,t = 2 32 ×
1

2
W ×

1

2
H upproj-con,t = 2 16 ×

1

2
W ×

1

2
H

Block 5 upproj,t = 2 1 × W × H upproj,t = 2 1 × W × H

Table 3. Depth estimation accuracy of different SIDE networks in

NYU dataset.
Method REL RMSE δ1 δ2 δ3

Eigen [8] 0.158 0.641 0.769 0.950 0.988

Chakrabarti [2] 0.149 0.620 0.806 0.950 0.988

Laina [17] 0.127 0.573 0.629 0.899 0.971

Li [19] 0.152 0.611 0.789 0.955 0.988

MS-CRF [26] 0.121 0.586 0.811 0.954 0.987

DORN [10] 0.115 0.509 0.828 0.965 0.992

DS-SIDENet 0.113 0.501 0.833 0.968 0.993

More details can be found in [9][5].

5.2. Comparison to existing methods

First we use the NYU dataset to evaluate our DS-SIDENet.

In Table 3, we give the comparison of our DS-SIDENet to

some commonly-used SIDE methods. It can be seen that

our DS-SIDENet achieves better accuracy than the state-of-

art SIDE method DORN [10]. In addition, our DS-SIDENet

takes only 150ms to predict a 640 × 480 image in single

Tesla V100 GPU, which is much faster than 600 ms of

DORN, and 1 second of MS-CRF. This signifies the advan-

tage of depth-wise separable convolutions. Some example

outputs are given in Fig. 4, where better estimated depth

maps are generated by DS-SIDENet.

Next, we show the accuracy of our robust SIDE frame-

work in ScanNet and KITTI, in Table 4 and Table 5 respec-

tively. The scene understanding is achieved by WideRes-

Net scene classification in ‘Ours-sc’, and by DS-SIDENet

coarse depth estimation in ‘Ours-cde’. It can be seen that

we achieve best accuracy in both the ScanNet and KITTI

datasets, compared to top ROB submissions1. We also no-

tice that the SIDE accuracy using scene classification is ex-

act the same as the one using coarse depth estimation. The

reason is that both of these two methods are able to achieve

100% classification accuracy in the ROB test set when clas-

sifying ScanNet images to low depth-range, and classifying

KITTI images to high depth-range. This gives us another

advantage that our robust SIDE framework will not decrease

1The ScanNet leaderboard is not updated anymore. For KITTI

leaderboard, please see the our DS-SIDENet-ROB submission in

http://www.cvlibs.net/datasets/kitti/eval_depth.

php?benchmark=depth_prediction, ROB submissions have

‘ROB’ in their name.

Figure 4. Example outputs of DS-SIDENet in NYU dataset, as

well as state-of-art SIDE methods. (a) RGB input (b) Laina [17]

(c) DORN [10] (d) Ours DS-SIDENet (e) Ground-truth.

the accuracy much compared to training different SIDE net-

works for different datasets. In Section 5.3.3, we show that

the accuracy of using coarse depth estimation is sensitive

to the threshold of depth range. In realistic scenario, using

scene classification will be better since it provides an inde-

pendent voting into the scene types and will be less sensi-

tive to threshold errors. We also notice that if we directly

use the coarse depth as the final output (‘cde only’), the ac-

curacy is much worse. This signifies the advantage of our

robust SIDE framework, compared to training one network

based on dataset fusion. Due to the high-efficiency of DS-

SIDENet, our robust SIDE network still takes 300-400ms in

average to process the ROB testing images in single Telsa

V100 GPU. Some example outputs of KITTI images are

given in Fig. 5.

As summary, our DS-SIDENet is effective for single im-

age depth estimation. Our robust SIDE framework based

on DS-SIDENet is capable of providing considerable depth

estimation results for both indoor and outdoor scenarios.
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Table 4. Depth estimation accuracy in ScanNet test set, compared

to the ROB submissions. ‘cde’ means coarse depth estimation, ‘sc’

means scene classification.
Method RMSE MAE REL sqREL

CSWS-ROB [18] 0.31 0.24 0.15 0.06

DABC-ROB [20] 0.29 0.22 0.14 0.06

DORN-ROB [10] 0.29 0.22 0.14 0.06

cde only 0.366 0.292 0.191 0.113

Ours-sc 0.287 0.219 0.138 0.057

Ours-cde 0.287 0.219 0.138 0.057

Table 5. Depth estimation accuracy in KITTI test set, compared

to ROB submissions. ‘cde’ means coarse depth estimation, ‘sc’

means scene classification.
Method iRMSE REL (%) SIlog sqREL (%)

DABC-ROB [20] 15.53 12.72 14.49 4.08

DORN-ROB [10] 15.96 10.35 13.53 3.06

CSWS-ROB [18] 16.38 11.84 14.85 3.48

cde only 19.96 20.17 21.22 6.75

Ours-sc 14.61 10.08 12.88 2.78

Ours-cde 14.61 10.08 12.88 2.78

Figure 5. Example outputs of our robust SIDE framework in

KITTI SIDE test set, comparison to ROB submissions.

5.3. Ablation study and discussions

In this section, we give ablation study of the key modules

of our DS-SIDENet and robust SIDE framework.

5.3.1 Multi-task vs. single-task in DS-SIDENet

First, we test DS-SIDENets with different tasks in depth es-

timation, which corresponds to different decoding branches.

We consider three different branches, including the standard

depth classification with cross-entropy loss (hard-cls), the

standard depth regression (reg), and the soft classification

loss (soft-cls) in DS-SIDENet. In Table 6, we train DS-

SIDENets for the above three tasks, as well as our multi-

task two-branch network which combines them. It can be

seen that the DS-SIDENet based on ‘soft-cls’ loss achieves

the best performance among the single-task networks. This

observation is consistent to the one in disparity estimation

Table 6. Accuracy comparison of DS-SIDENets with different

tasks. RMSE and REL in NYU dataset are given.

Method REL RMSE Training Testing

DS-SIDENet 0.122 0.518 reg reg

DS-SIDENet 0.137 0.522 hard-cls hard-cls

DS-SIDENet 0.120 0.511 soft-cls soft-cls

DS-SIDENet 0.126 0.514 hard-cls+reg hard-cls

DS-SIDENet 0.119 0.515 hard-cls+reg reg

DS-SIDENet 0.113 0.501 soft-cls+reg soft-cls

DS-SIDENet 0.117 0.510 soft-cls+reg reg

Figure 6. Example output of two branches from DS-SIDENet.

[14], where the cross-entropy loss performs worse com-

pared to the one based on soft-probability. In addition, we

notice that the multi-task networks clearly show better per-

formance than the single-task networks. This can be ex-

plained as the multi-task learning is able to improve the dis-

criminative ability and generalization power of the encoding

module.

In Fig. 6, we visualize the outputs of reg and soft-cls

branches of our DS-SIDENet. It can be seen that compar-

ing to the regression branch, the output of the classifica-

tion branch is sharper. These two branches reflect different

characteristics. This motivates us to further train a fusion

network [22] over the outputs of these two branches. Our

preliminary results show that the accuracy can be further

enhanced by adding such fusion module.

5.3.2 Using different decoding layers in DS-SIDENet

Next, we compare the DS-SIDENets using different decod-

ing layers. In Table 7, we give the comparison between

our decoding layer ‘upproj-con’ (row 5) and the standard

‘upproj’ layer (row 2), as well as with and w/o skip connec-

tions (row 3/4). It can be seen that the DS-SIDENet with

our ‘upproj-con’ layers shows superior performance than

others in NYU dataset. If we remove either the skip con-

nection from the encoding part, or the skip connection from

the RGB input, the accuracy will decrease. The reason is

that the skip connection of the encoding part includes some

high-level information, and the skip connection of the RGB

input is similar to a pooling layer which captures global

context. Integrating these information into the decoding

process will be helpful.

In Table 8, we give the accuracy of the high depth-range

DS-SIDENets in KITTI validation dataset, with and w/o

SHG/SAM in the decoding part. It can be seen that the ac-
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Table 7. Comparison of different decoding layers in DS-SIDENet.

RMSE and REL in NYU dataset are given.

Method REL RMSE Skip-encoding Skip-RGB

DS-SIDENet 0.126 0.556 no no

DS-SIDENet 0.119 0.527 yes no

DS-SIDENet 0.121 0.532 no yes

DS-SIDENet 0.113 0.501 yes yes

curacy of DS-SIDENet with SAM decoding module is bet-

ter than the one with SHG decoding module, and also better

than without either SHG or SAM modules. A potential rea-

son is that the stacked hourglass provides larger receptive

field as well as keeping a relatively larger feature map size,

which is more important for the high depth-range images in

outdoor scenarios. With carefully designed dilated convo-

lutions, SAM can aggregate denser features while avoiding

downsampling operations in SHG. We also try adding SHG

or SAM module in the low depth-range DS-SIDENet, the

accuracy does not improve much. In addition, we find that

it is better to add SAM module as the third decoding block.

Adding such module at the fourth or fifth block will not im-

prove the accuracy much, but the efficiency is reduced due

to larger feature map size.

5.3.3 Scene understanding stage: scene classification

vs. coarse depth estimation

We introduced two scene understanding methods in the ro-

bust SIDE, the scene classification, and the coarse depth es-

timation. The advantage of using scene classification is that

it does not depend on actual calculation of depth threshold,

so it is more practical in real scenario. But training such

network requires collecting various external training data

(Places-365 dataset). In contrast, when training the coarse

depth estimation, we may use the same training data as the

following low depth-range and high depth-range SIDE net-

works. But setting the threshold σ of depth range is dif-

ficult. The σ = 5.89m obtained from ROB validation data

can achieve 100% classification accuracy in the ROB testing

images, but this is not realistic in real scenario. To evaluate

the influence, we further do the following experiments

- R1: Keep the same coarse depth estimation, low depth-

range and high depth-range DS-SIDENets trained for the

optimal threshold of 5.89m, but change the threshold to 10m

- R2: Keep the same coarse depth estimation and high

depth-range DS-SIDENets, but re-train low depth-range

DS-SIDENet by mixing all ScanNet images with KITTI im-

ages whose maximum depth is lower than 10m. Change the

threshold to 10m as well

In Table 9, we give the accuracy of the above two ex-

periments. It can be seen that if the threshold is set to

10m (R1), the KITTI accuracy decreases without re-training

low depth-range DS-SIDENet. The reason is that some of

Table 8. Depth estimation accuracy of different high depth-range

DS-SIDENets in KITTI validation set, with and w/o SHG/SAM

module.
DS-SIDENet SHG/SAM in decoding iRMSE REL

+SHG Block 3 8.29 0.075

+SAM Block 3 7.83 0.066

+SAM Block 4 7.84 0.066

+SAM Block 5 7.84 0.066

noSHG/SAM N/A 8.68 0.085

Table 9. Accuracy of different robust SIDE methods in ScanNet

test set (RMSE/REL) and KITTI validation set (iRMSE/REL). σ

is the threshold to decide the low depth-range and high depth-

range. ‘Re-train’ means whether retraining the low depth-range

DS-SIDENet by adding the KITTI images with maximum depth

lower than σ.
Method σ Re-train ScanNet KITTI

Ours-sc N/A No 0.287/0.138 7.83/0.066

Ours-cde 5.89m No 0.287/0.138 7.83/0.066

R1 10m No 0.287/0.138 8.44/0.072

R2 10m yes 0.366/0.191 8.40/0.071

KITTI images will incorrectly utilize the low depth-range

DS-SIDENet for depth estimation. However, the ScanNet

accuracy will not change since all ScanNet images are still

classfied as low depth-range images. If we re-train the low

depth-range DS-SIDENet by adding some of KITTI train-

ing data (R2), although the KITTI accuracy improves, but

the ScanNet accuracy decreases. The reason is that the out-

door context brought by KITTI images is totally different

from the indoor context of ScanNet images. As a result, the

convergence of the re-trained low depth-range DS-SIDENet

will be influenced. This tells us that using coarse depth

estimation for scene understanding in robust SIDE (‘ours-

cde’) is sensitive to the threshold. In contrast, the one based

on scene classification (‘ours-sc’) has better generalization

ability in real scenario.

6. Conclusion

In this paper, we proposed a two-stage framework for ro-

bust single image depth estimation. A scene understand-

ing module is first applied to categorize the images into

low depth-range and high depth-range classes. Different

SIDE networks trained specifically for these depth ranges

are utilized to obtain an accurate depth map. In addition,

we developed a single image depth estimation network (DS-

SIDENet) having an encoding-decoding architecture. The

use of depth-wise convolution in the encoding part ensures

a better efficiency. The multi-task training in the decod-

ing network further improves the accuracy compared to

single-task network. We showed that our proposed method

achieves competitive performance compared to the state-of-

art algorithms on NYU, ScanNet, and KITTI datasets. We

achieved the top rank compared to ROB 2018 submissions.
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